

Optimization of Modified
Brachistochrone Curves

Subject to Polynomial Constraints

Kevin Louth
Dynamics Honors Project

May 2011

	 1	

Abstract

In this project, the historical math problem of the brachistochrone curve was
expounded upon by calculating the polynomials of increasing degrees that
yielded the minimum time for a particle traveling along these polynomials
only under the influence of gravity. The computer programs MatLab and
FreeMat were used for numerical integration to find the ranges of the
polynomial coefficients that minimized the traversal time. A generalized
method was developed to find a range of the time-minimizing coefficients
for any degree polynomial by using multidimensional arrays. Using this
range of coefficients, Maple was used to find a more accurate calculation for
the coefficients and traversal time. When compared to the inverted cycloid
classical solution for the brachistochrone curve, it was found that as the
degree of the polynomial increased, the resulting curve modeled the cycloid
curve more and more closely. It was also found that as the visual separation
between the polynomial curves and the cycloid curve was minimized, the
time approached a minimum limit for time: that of the cycloid solution. In
this project, the extensive use of math tools such as FreeMat, MatLab, and
Maple has been very educational, and this is experience that will inevitably
be helpful in the field of engineering.

	 2	

Table of Contents

Description

Page

Abstract 1
Table of Contents 2
List of Tables and Figures 2
Experimental Data 3
Explanation of Program Logic 10
Discussion 12
Conclusions 12
Appendix 13

List of Tables and Figures

Figure No. Description Page

Eq (E.1) Equation for Time Calculation 3
Fig G.1 Cycloid Graph 4
Fig G.2 Free Body Diagram of Particle for Degree n=1 5
Fig G.3 Physical Trigonometry of Degree n=1 5
Fig G.4 Degree n=1 Polynomial Graph (with cycloid comparison) 5
Fig G.5 Degree n=2 Polynomial Graph (with cycloid comparison) 6
Fig G.6 Degree n=3 Polynomial Graph (with cycloid comparison) 7
Fig G.7 Degree n=4 Polynomial Graph (with cycloid comparison) 8

	 3	

Experimental Data
(refer to Appendix for all program code)

Derivation of time equation
 It is important in this project to provide a general method for
calculating the time required for a particle to traverse any curve. It is simple
to see that the speed of the particle is changing with respect to its y-
coordinate. Since speed is distance over time, time is distance divided by
speed. One can imagine that over a very short interval of distance, say ‘ds,’
the speed hardly changes, thus an average speed on that interval will yield an
accurate approximation of the time required to traverse ds. Conservation of
energy holds for this situation, thus the speed of a particle can be written in
terms of the y-distance it has dropped. The length of ds can be formulated
via the Pythagorean theorem, where ds2 = dx2 + dy2. Algebraic manipulation
yields that ds = (1 + (yʹ)2)*dx, where yʹ=dy/dx. Combining all these
concepts and terms, the following equation for time is formulated.

(1 + (yʹ)2)
t = ∫ 2g(16-ymid)

dx Eq. (E.1)

Though in MatLab we will integrate time numerically by summing all the
differential time elements (dt), this equation is the backbone of calculating
time.

Classical Solution: The Cycloid Calculation

The first step in calculating the equation for the cycloid is to use the
general parameterized equations of a cycloid to find the specific cycloid
curve between the two points P=(0,16) and Q=(20,0). The general cycloid
equations are as follows, where C1 and C2 are constants that shift the curve:
 x = r(θ – sin(θ)) + Cx
 y = r(θ – cos(θ)) + Cy

These parameters are both in terms of variable θ. For simplicity, the initial
value of θ will be taken to be zero. Knowing that the curve plotted between
A and B is not a standard cycloid, x and y coordinates must be shifted
accordingly. At θ0=0,

Using: x(0)=0 and y(0)=16
Calculated: Cx=0 and Cy=16

	 4	

Then, Maple was used to calculate θf and r. At θf :
 Using: x(θf)=20 and y(θf)=0
 Calculated: θf = -2.775255217 and r = -8.274525895

MatLab was then used to calculate the time it takes for a ball to roll down a
curve. Because Maple was unable to integrate the time equation for a more
accurate cycloid time, the step size of θ was increased dramatically in
MatLab to yield a more accurate time. Below is the result.
 tcyc= 2.54881629 (s)

The second part of the program graphed the resulting curve.

Figure G.1: Cycloid

	 5	

Polynomial Degree n=1 Calculation
 There are numerous ways to calculate time for a degree n=1
polynomial, because this is a straight line and there is only one equation of a
line that passes through both points P and Q. The most accurate way by far
requires no integration and only involves a free body diagram of a particle.

Figure G.2: Free Body Diagram

Figure G.3: Physics Trigonometry

Via trigonometry of Figure 3:
 L = (x2 + y2)0.5 and θ = tan-1(y/x)
Since the acceleration of the particle is the tangential component of gravity:
 a = g·sin(θ)
Using these, it is known that in time t, the particle initially at rest travels a
distance L = 0.5a·t2. Solving for t and plugging in values:
 t1 = 2.89116197 (s)
The graph of the n=1 polynomial is of course quite easy to predict.

Figure G.4: Polynomial Degree n=1

	 6	

Polynomial Degree n=2 Calculation
 There are infinitely many solutions for a polynomial of degree n=2
that pass through P and Q, but only one of those solutions yields the
minimum time. The basic equation for degree n=2 is below.
 y2(x) = Ax2 + Bx + C

Using the initial conditions y(x0=0)=16 and y(xf=20)=0, y can be written in
terms of A and x, where:
 y2(x,A) = Ax2 – (20A+4/5)x + 16

Writing a MatLab program with two vectors (x and A), one can find the A
that yields the minimum time. MatLab was then used to graph the
polynomial, as changes in the value of A are miniscule, and changes to the
plot of the graph are undetectable to the human eye. Using the approximate
value of A that has been calculated, Maple can then be used to find a more
accurate minimum time value by using a guess and check approach for A.
 t2= 2.612202573 (s)
 y2(x) = 0.049985x2 – 1.7997x +16

Figure G.5: Polynomial Degree n=2

	 7	

Polynomial Degree n=3 Calculation
 Like the degree n=2 polynomial, there are infinitely many solutions
for the n=3 polynomial that pass through points P and Q, but only one set of
coefficients that yield the minimum time. The general equation for n=3 is:
 y3(x) = Ax3 + Bx2 + Cx + D
Using initial conditions like the degree n=2 case, two of the coefficients can
be written in terms of the other coefficients, thus:
 y3(x,A,B) = Ax3 + Bx2 – (400A+20B+4/5)x + 16
Since there are multiple coefficients to consider as variables, finding the
minimizing coefficients is not as direct as for n=2. In MatLab, two
possibilities come to mind: either loops or multivariable arrays. Because
multidimensional arrays are faster to calculate and more difficult to
visualize/set up, I of course accepted the challenge and used arrays. An
explanation of how my programs work is in the following section,
Explanation of Program Logic. Again, taking the rough coefficient values
from MatLab and using Maple for fine-tuning, these are the results:
 t3= 2.578271120 (s)
 y3(x) = -0.00311x3 + 0.1434x2 – 2.424x + 16

Figure G.6: Polynomial Degree n=3

	 8	

Polynomial Degree n=4 Calculation
 Though not required to calculate a polynomial of degree n=4, I
decided to test my generalized method for calculating minimizing
coefficients and time to see if the method was indeed effective for higher
order polynomials. Since multidimensional arrays take up a large amount of
memory and the number of calculations performed by the computer
increases exponentially with added dimensions, the range for each
coefficient had to be kept small with a large step size so that the program
could run in a reasonable time. As before, starting with the general equation
of a degree n=4 polynomial then putting 2 of the coefficients in terms of the
others via the initial conditions, these are the results:
 y4(x) = Ax4 + Bx3 + Cx2 + Dx + E
 y4(x,A,B,C) = Ax4 + Bx3 + Cx2 – (8000A + 400B + 20C + 4/5)x + 16
Running the program, narrowing in on the coefficients’ ranges, and using
Maple to find more accurate values, below are the results:
 t4 = 2.573758065 (s)
 y4(x) = (6.30·10-5)x4 – (5.22·10-3)x3 + (0.616)x2 – (2.436)x + 16

Figure G.7: Polynomial Degree n=4

	 9	

Hypothetical Degree n=5 Calculation

Though using the general method of multidimensional arrays for
degree n=5 yielded legitimate results (i.e. not an inverted polynomial,
imaginary time, ridiculous numbers, etc.), I was unable to use the guess and
check method with Maple to zero in on the minimizing coefficients. Though
MatLab yielded approximate results, more complex programming is needed
to converge on the absolute minimum time and the coefficients that yield
that time. Using Maple, I was unable to calculate a time that was smaller
than the time for the previous polynomials, and it would be inaccurate to use
MatLab’s results because of the error in numerical integration. Thus,
calculating polynomial degree n=5 is possible, but requires additional
methodology.

	 10	

Explanation of Program Logic

The MatLab programs written to calculate the polynomials and times in the
Experimental Results section are radically different than the classical
approach of using loops for multiple variables. The use of multidimensional
arrays, though not very memory efficient, takes much less time than running
a program of embedded ‘for’ loops.

I developed a general method for calculating the approximate values for
minimizing coefficients of any degree polynomial. Each of the programs
begins by defining vectors for each variable in the polynomial (i.e. the
variable ‘x’ and the free coefficients, A, B, etc.) Each of these one-
dimensional vectors is defined along its own dimension, each independent of
one another. Then, the length and size of each vector are assigned to
variables for later reference. The next step is the fundamental idea behind
this method of arrays. Each of the one-dimensional vectors is repeated in
every dimension except the dimension of that vector. For instance, if a
vector is along the x-direction and there are 3 dimensions, the vector would
be repeated along the y- and z-directions, so that the vector is constant in all
directions except the one in which it was originally defined. Once the
vectors are repeated, they become multidimensional arrays. The size of
every array is the same, and the length of each of the vectors originally
defined determines the length of each dimension in the array. For instance,
if the ‘A’ vector was 101 elements long and it was in the y-direction, the y-
dimension of each array would be 101 elements long. This is the purpose of
referencing each vector’s length.

Next is the actual calculation of time. Since all the variables’ arrays are the
same size, algebraic operations can be done element by element. After
defining the polynomial ‘y,’ the derivative of y must then be defined. While
the ‘diff’ command might be useful, it is difficult to reference a specific
dimension, so the derivative of y (yʹ) is defined manually by finding the
difference of adjacent y values divided by the difference of adjacent x
values. It is important that these calculations take place in the dimension of
x, as we are not differentiating with respect to coefficients. After yʹ is
defined, we must write a modified equation for differential time (dt), using
Eq. (E.1) referenced in Experimental Results. Notice that when
differentiating a vector in MatLab, the length of the vector decreases by one
element because differentiating finds the difference in adjacent elements.

	 11	

So, the dx term of Eq. (1) is one element shorter than y. Therefore, we can
account for this by taking y to be the midpoint between adjacent y values
(adding adjacent values and dividing by two). Like differentiating, this
decreases the length of y by one element, and it also makes the integration
more accurate, as using a midpoint yields a much better estimate than left
point or right point numerical integration. After defining dt, all the elements
in dt must be summed along the x direction and stored in a new array we
will call t. This decreases the number of dimensions in the dt array by one,
leaving only the dimensions belonging to the coefficients. The meaning is,
every value inside the t array is a time value, and the index numbers for each
of these elements correspond to the index numbers for the corresponding
dimension’s coefficient. By finding the minimum value of t in this array,
then recording and calling the index numbers that reference this minimum
value, one can locate the unique set of coefficients that minimize time. After
defining a new one-dimensional vector for x, one can use the minimizing
coefficients to make a new one-dimensional vector for y in terms of x, and
then make a plot of y versus x.

After successfully running this program, one should manually decrease the
range and decrease the step size of the one-dimensional vectors for each
coefficient according to the values calculated. Supposing the program is
written correctly, this should be the only change necessary to converge on
more accurate values for the minimizing coefficients. To ensure your time is
accurate, use a reasonably small step size for the x vector. Make sure not to
change this x vector when adjusting the coefficient ranges, as x is a true
variable, and altering it will give you invalid results.

	 12	

Discussion

It makes sense that as the polynomials increased in degree, they modeled the
cycloid solution more and more closely. It is highly doubtful that any
function with restrictions imposed on it (i.e. a polynomial of restricted
degree) would turn out to be a better solution than the cycloid solution
theorized by Leibnitz, Newton, etc. Since trigonometric functions can be
written as polynomials tending towards degree n=∞, it makes sense that
since the parameterizations for cycloid curves involve trigonometric
functions, and if indeed a cycloid is the best solution to the brachistochrone
problem, then as the degree of the polynomial modeling the cycloid tends to
∞, then the difference in the cycloid solution and the polynomial graphically
tends to zero. Hypothetically, if I would have successfully calculated
polynomial degree n=5 or higher, the polynomial would have nearly masked
the cycloid curve just by shear similarity.

Looking at the programming that went into this project, I have yet to
hypothesize a faster way, or developed an alternative method, to calculating
the time of a polynomial and the corresponding minimizing coefficients.
Multidimensional arrays seem like a very effective way to approach a
problem of several variables when solving said problem numerically.

Conclusions

• The higher the degree of polynomial, the more closely it models the
cycloid brachistochrone curve between two given points.

• As polynomial degree increases, the minimum time yielded from the
polynomial curve decreases to an asymptotic limit. The results of this
project indicate that this limit is the time it takes for a particle to
traverse the inverted cycloid (the classical brachistochrone solution).

• Substituting Taylor series polynomials for the trigonometric functions
in the cycloid parameters (e.g. cos(θ) and sin(θ)) theoretically yields
the same minimum time as the cycloid. This is true so long as the
degree of the Taylor series polynomial tends towards ∞ (infinity).

• My intelligence is not of the same caliber as that of Isaac Newton, but
perseverance on this project led me to successfully calculate the
requested polynomials and corresponding times.

	 13	

Appendix
(MatLab program coding)

P.0 (cycloid)

% z=theta
clear all

cx = 0;
cy = 16;
r = -8.274525895;
zf = -2.775255217;
z = [0:-0.00001:zf]';
M = ones(size(z));

x = r*(z-sin(z)); % + cx
y = r*(M-cos(z))+cy*M;

plot(x,y,'b');
axis equal;
grid on;

g = 9.81;
n = length(z);
ymid = (y(1:n-1)+y(2:n))/2;
yp = diff(y)./diff(x);
N = ones(size(yp));
dx = (x(2:n)-x(1:n-1));
dt = (sqrt((1+yp.^2)./(2*g*(16-ymid)))) .* dx;

m = length(dt);
t = sum(dt(1:m))

P.1 (polynomial degree n=1)

% physical calculation
clear all
x = [0:0.001:20];
y = (-4/5)*x + 16;

h = 16;
b = 20;
L = sqrt(h^2 + b^2);
theta = atan(h/b);
g = 9.81;
gx = g*sin(theta);
t = sqrt(2*L/gx);
t

plot(x,y,'g');
axis equal;
grid on;

OR
% numerical calculation
clear
g = 9.81;
m = -4/5;
b = 16;
x = [0:0.0001:20];
y = m*x + b;

plot(x,y,'c');
axis equal;
grid on;

n = length(y);
ypM = diff(y)./diff(x);
yp = ypM(1);
ymid = (y(1:n-1)+y(2:n))/2;
dx = (x(2:n)-x(1:n-1));
dt = sqrt((1+yp^2)/(2*g*(16-ymid))) .* dx;

m = length(dt);
t = sum(dt(1:m))

plot(x,y,'r');
axis equal;
grid on;

	 14	

P.2 (polynomial degree n=2)

clear all
A = [0.0502:0.000001:0.0504]; % A = row vector
B = -20*A-4/5; % B = row vector
C = 16;

x = [0:.01:20]'; % x = column vector
y = (x.^2)*A + x*B + C;

nA = length(A);
nx = length(x);
g = 9.81;
x1 = x*ones(size(A));
yp = diff(y)./diff(x1);
ymid = (y(2:nx,1:nA) + y(1:nx-1,1:nA))/2;
dx = (x1(2:nx,1:nA)-x1(1:nx-1,1:nA));
dt = sqrt((1 + yp.^2) ./ (2*g*(C-ymid))) .* dx;

choose = 195;

% A = [0:.01:2], n=6 yields t_min; A(6)=0.05
% A = [0.04:0.0001:0.06], n=104; A(104)=0.0503
% A = [0.0502:0.000001:0.0504], n=190:200….
% A = utter overkill precision

L = length(dt);
t = sum(dt(1:L,choose));

Amin = A(choose);
B = -20*Amin - 4/5;
C = 16;
y = Amin*x.^2 + B*x + C;

axisX = [0 20];
axisY = [0 0];
plot (x,y,'c',axisX,axisY,'k--');
axis equal;
grid on;
printf('t = %.4f A = %.4f B = %.4f C = %.0f\n',
 t,Amin,B,C);

P.3 (polynomial degree n=3)

clear all

x(1,1,:) = [0:0.01:20]; % extrusion
A(1,:,1) = [-0.0032:0.00005:0.0030]; % row
B(:,1,1) = [0.142:0.0005:0.144]; % column

lA = length(A);
lB = length(B);
lx = length(x);
sA = size(A);
sB = size(B);
sx = size(x);

% C = -(400*A + 20*B + 4/5);
D = 16;

x = repmat(x, [lB,lA,1]);
A = repmat(A, [lB,1,lx]);
B = repmat(B, [1,lA,lx]);

%% three 3-D arrays

y = A.*x.^3+B.*x.^2+(-(400*A+20*B+4/5)).*x +D;
yp = (y(:,:,2:lx)-y(:,:,1:lx-1))./(x(:,:,2:lx)-x(:,:,1:lx-1));
dt = sqrt((1+yp.^2)./(2*9.81*(D - (y(:,:,1:lx-1)
 +y(:,:,2:lx))/2))) .* (x(:,:,2:lx)-x(:,:,1:lx-
1));
t = sum(dt,3);
[tmin J] = min(min(t));
[tmin I] = min(min(t'));

Amin = A(I,J,1);
Bmin = B(I,J,1);
Cmin = -(400*Amin + 20*Bmin + 4/5);
x_p = [0:0.01:20];
y_p = Amin*x_p.^3 + Bmin*x_p.^2 + Cmin*x_p + D;

axisX = [0 20];
axisY = [0 0];
tmin = tmin
printf('A = %.5f B = %.5f C = %.5f D = %.0f\n',
 Amin, Bmin, Cmin, D);
plot(x_p,y_p,'m',axisX,axisY,'k--');
axis equal;
grid on;

	 15	

P.4 (polynomial degree n=4)

clear all

x(1,1,1,:) = [0:0.05:20]; % block number
A(1,1,:,1) = [0.00005:0.000001:0.00007]; % depth #
B(1,:,1,1) = [-0.0052:0.00001:-0.0050]; % column #
C(:,1,1,1) = [0.158:0.0001:0.160]; % row #

lA = length(A);
lB = length(B);
lC = length(C);
lx = length(x);
sA = size(A);
sB = size(B);
sC = size(C);
sx = size(x);

% D = -8000*A - 400*B - 20*C - 4/5;
E = 16;

x = repmat(x, [lC,lB,lA,1]);
A = repmat(A, [lC,lB,1,lx]);
B = repmat(B, [lC,1,lA,lx]);
C = repmat(C, [1,lB,lA,lx]);

%% four 4-D arrays

y = A.*x.^4 + B.*x.^3 + C.*x.^2
 - (8000*A + 400*B + 20*C + 4/5).*x + E;
yp = (y(:,:,:,2:lx)-y(:,:,:,1:lx-1))
 ./ (x(:,:,:,2:lx)-x(:,:,:,1:lx-1));
dt = sqrt((1+yp.^2)
 ./(2*9.81*(E-(y(:,:,:,1:lx-1)+y(:,:,:,2:lx))/2)))
 .* (x(:,:,:,2:lx)-x(:,:,:,1:lx-1));
t = sum(dt,4);

[tmin K] = min(min(min(t)));
[NA1 J] = min(min(t(:,:,K)));
[NA2 I] = min(t(:,J,K));

Amin = A(1,1,K,1);
Bmin = B(1,J,1,1);
Cmin = C(I,1,1,1);
Dmin = -8000*Amin - 400*Bmin - 20*Cmin - 4/5;

x_plot = [0:0.01:20];
y_plot = Amin*x_plot.^4 + Bmin*x_plot.^3 +
Cmin*x_plot.^2 + Dmin*x_plot + E;

axisX = [0 20];
axisY = [0 0];
tmin = tmin
printf('A=%.7f B=%.6f C=%.5f D=%.5f E=%.0f\n',
 Amin,Bmin,Cmin,Dmin,E);

P.5 (polynomial degree n=5)

clear all

x(1,1,1,1,:) = [0:0.01:20]; % block column #
A(1,1,1,:,1) = [-2e-7:1e-8:-1e-7]; % block row #
B(1,1,:,1,1) = [-3.9e-5:1e-6:-3.7e-5]; % depth #
C(1,:,1,1,1) = [-4.1e-4:1e-6:-3.9e-4]; % column #
D(:,1,1,1,1) = [0.0908:0.0001:0.0912]; % row #

lA = length(A);
lB = length(B);
lC = length(C);
lD = length(D);
lx = length(x);
sA = size(A);
sB = size(B);
sC = size(C);
sD = size(D);
sx = size(x);

% E = -(160000*A + 8000*B + 400*C + 20*D + 4/5);
F = 16;

x = repmat(x, [lD,lC,lB,lA,1]);
A = repmat(A, [lD,lC,lB,1,lx]);
B = repmat(B, [lD,lC,1,lA,lx]);
C = repmat(C, [lD,1,lB,lA,lx]);
D = repmat(D, [1,lC,lB,lA,lx]);

%% five 5-D arrays

y = A.*x.^5 + B.*x.^4 + C.*x.^3 + D.*x.^2 -
(160000*A
 + 8000*B + 400*C + 20*D + 4/5).*x + F;
yp = (y(:,:,:,:,2:lx)-y(:,:,:,:,1:lx-1))
 ./ (x(:,:,:,:,2:lx)-x(:,:,:,:,1:lx-1));
dt = sqrt((1+yp.^2)./(2*9.81*(F - (y(:,:,:,:,1:lx-1)
 +y(:,:,:,:,2:lx))/2)))
 .* (x(:,:,:,:,2:lx)-x(:,:,:,:,1:lx-1));
t = sum(dt,5);

[tmin N] = min(min(min(min(t))));
[NA1 K] = min(min(min(t(:,:,:,N))));
[NA2 J] = min(min(t(:,:,K,N)));
[NA3 I] = min(t(:,J,K,N));

Amin = A(1,1,1,N,1);
Bmin = B(1,1,K,1,1);
Cmin = C(1,J,1,1,1);
Dmin = D(I,1,1,1,1);
Emin = -(160000*Amin + 8000*Bmin + 400*Cmin
 + 20*Dmin + 4/5);

	 16	

plot(x_plot,y_plot,'r',axisX,axisY,'k--');
axis equal;
grid on;

x_plot = [0:0.01:20];
y_plot = Amin*x_plot.^5 + Bmin*x_plot.^4 +
Cmin*x_plot.^3 + Dmin*x_plot.^2 + Emin*x_plot + F;

axisX = [0 20];
axisY = [0 0];
tmin = tmin

printf('A = %.4e B = %.4e C = %.4e D = %.5f
 E = %.5f F = %d\n',
 Amin,Bmin,Cmin,Dmin,Emin,F);
plot(x_plot,y_plot,'k',axisX,axisY,'k--');
axis equal;
grid on;

Maple Program Coding

Cycloid

Degree n=2

Degree n=3

Degree n=4

