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Abstract 
 
In this project, the historical math problem of the brachistochrone curve was 
expounded upon by calculating the polynomials of increasing degrees that 
yielded the minimum time for a particle traveling along these polynomials 
only under the influence of gravity.  The computer programs MatLab and 
FreeMat were used for numerical integration to find the ranges of the 
polynomial coefficients that minimized the traversal time.  A generalized 
method was developed to find a range of the time-minimizing coefficients 
for any degree polynomial by using multidimensional arrays.  Using this 
range of coefficients, Maple was used to find a more accurate calculation for 
the coefficients and traversal time.  When compared to the inverted cycloid 
classical solution for the brachistochrone curve, it was found that as the 
degree of the polynomial increased, the resulting curve modeled the cycloid 
curve more and more closely.  It was also found that as the visual separation 
between the polynomial curves and the cycloid curve was minimized, the 
time approached a minimum limit for time: that of the cycloid solution.  In 
this project, the extensive use of math tools such as FreeMat, MatLab, and 
Maple has been very educational, and this is experience that will inevitably 
be helpful in the field of engineering. 
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Experimental Data 
(refer to Appendix for all program code) 
 
Derivation of time equation 
 It is important in this project to provide a general method for 
calculating the time required for a particle to traverse any curve.  It is simple 
to see that the speed of the particle is changing with respect to its y-
coordinate.  Since speed is distance over time, time is distance divided by 
speed.  One can imagine that over a very short interval of distance, say ‘ds,’ 
the speed hardly changes, thus an average speed on that interval will yield an 
accurate approximation of the time required to traverse ds.  Conservation of 
energy holds for this situation, thus the speed of a particle can be written in 
terms of the y-distance it has dropped.  The length of ds can be formulated 
via the Pythagorean theorem, where ds2 = dx2 + dy2.  Algebraic manipulation 
yields that ds = (1 + (yʹ)2)*dx, where yʹ=dy/dx.  Combining all these 
concepts and terms, the following equation for time is formulated. 
 

(1 + (yʹ)2) 
t = ∫ 2g(16-ymid) 

dx              Eq. (E.1) 

 
Though in MatLab we will integrate time numerically by summing all the 
differential time elements (dt), this equation is the backbone of calculating 
time. 
 
Classical Solution: The Cycloid Calculation 

The first step in calculating the equation for the cycloid is to use the 
general parameterized equations of a cycloid to find the specific cycloid 
curve between the two points P=(0,16) and Q=(20,0).  The general cycloid 
equations are as follows, where C1 and C2 are constants that shift the curve: 
 x = r(θ – sin(θ)) + Cx 
 y = r(θ – cos(θ)) + Cy 
 
These parameters are both in terms of variable θ.  For simplicity, the initial 
value of θ will be taken to be zero.  Knowing that the curve plotted between 
A and B is not a standard cycloid, x and y coordinates must be shifted 
accordingly.  At θ0=0,  

Using:  x(0)=0   and   y(0)=16 
Calculated:  Cx=0   and   Cy=16 
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Then, Maple was used to calculate θf and r.  At θf : 
 Using:  x(θf)=20   and   y(θf)=0 
 Calculated:  θf = -2.775255217   and   r = -8.274525895 
 
MatLab was then used to calculate the time it takes for a ball to roll down a 
curve.  Because Maple was unable to integrate the time equation for a more 
accurate cycloid time, the step size of θ was increased dramatically in 
MatLab to yield a more accurate time.  Below is the result. 
 tcyc= 2.54881629 (s) 
 
The second part of the program graphed the resulting curve. 
 

 
Figure G.1: Cycloid 
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Polynomial Degree n=1 Calculation 
 There are numerous ways to calculate time for a degree n=1 
polynomial, because this is a straight line and there is only one equation of a 
line that passes through both points P and Q.  The most accurate way by far 
requires no integration and only involves a free body diagram of a particle.   
 

Figure G.2: Free Body Diagram 

 

Figure G.3: Physics Trigonometry 

 
Via trigonometry of Figure 3: 
 L = (x2 + y2)0.5     and     θ = tan-1(y/x) 
Since the acceleration of the particle is the tangential component of gravity: 
 a = g·sin(θ) 
Using these, it is known that in time t, the particle initially at rest travels a 
distance L = 0.5a·t2.  Solving for t and plugging in values: 
 t1 = 2.89116197 (s) 
The graph of the n=1 polynomial is of course quite easy to predict. 
 

Figure G.4: Polynomial Degree n=1 
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Polynomial Degree n=2 Calculation 
 There are infinitely many solutions for a polynomial of degree n=2 
that pass through P and Q, but only one of those solutions yields the 
minimum time.  The basic equation for degree n=2 is below. 
 y2(x) = Ax2 + Bx + C 
 
Using the initial conditions y(x0=0)=16 and y(xf=20)=0, y can be written in 
terms of A and x, where: 
 y2(x,A) = Ax2 – (20A+4/5)x + 16 
 
Writing a MatLab program with two vectors (x and A), one can find the A 
that yields the minimum time.  MatLab was then used to graph the 
polynomial, as changes in the value of A are miniscule, and changes to the 
plot of the graph are undetectable to the human eye.  Using the approximate 
value of A that has been calculated, Maple can then be used to find a more 
accurate minimum time value by using a guess and check approach for A. 
 t2= 2.612202573 (s) 
 y2(x) = 0.049985x2 – 1.7997x +16 
 

Figure G.5: Polynomial Degree n=2 
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Polynomial Degree n=3 Calculation 
 Like the degree n=2 polynomial, there are infinitely many solutions 
for the n=3 polynomial that pass through points P and Q, but only one set of 
coefficients that yield the minimum time.  The general equation for n=3 is: 
 y3(x) = Ax3 + Bx2 + Cx + D 
Using initial conditions like the degree n=2 case, two of the coefficients can 
be written in terms of the other coefficients, thus: 
 y3(x,A,B) = Ax3 + Bx2 – (400A+20B+4/5)x + 16 
Since there are multiple coefficients to consider as variables, finding the 
minimizing coefficients is not as direct as for n=2.  In MatLab, two 
possibilities come to mind: either loops or multivariable arrays.  Because 
multidimensional arrays are faster to calculate and more difficult to 
visualize/set up, I of course accepted the challenge and used arrays.  An 
explanation of how my programs work is in the following section, 
Explanation of Program Logic.  Again, taking the rough coefficient values 
from MatLab and using Maple for fine-tuning, these are the results: 
 t3= 2.578271120 (s) 
 y3(x) = -0.00311x3 + 0.1434x2 – 2.424x + 16 
 

Figure G.6: Polynomial Degree n=3 
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Polynomial Degree n=4 Calculation 
 Though not required to calculate a polynomial of degree n=4, I 
decided to test my generalized method for calculating minimizing 
coefficients and time to see if the method was indeed effective for higher 
order polynomials.  Since multidimensional arrays take up a large amount of 
memory and the number of calculations performed by the computer 
increases exponentially with added dimensions, the range for each 
coefficient had to be kept small with a large step size so that the program 
could run in a reasonable time.  As before, starting with the general equation 
of a degree n=4 polynomial then putting 2 of the coefficients in terms of the 
others via the initial conditions, these are the results: 
 y4(x) = Ax4 + Bx3 + Cx2 + Dx + E 
 y4(x,A,B,C) = Ax4 + Bx3 + Cx2 – (8000A + 400B + 20C + 4/5)x + 16 
Running the program, narrowing in on the coefficients’ ranges, and using 
Maple to find more accurate values, below are the results: 
 t4 = 2.573758065 (s) 
 y4(x) = (6.30·10-5)x4 – (5.22·10-3)x3 + (0.616)x2 – (2.436)x + 16 
 

Figure G.7: Polynomial Degree n=4 
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Hypothetical Degree n=5 Calculation 
  

Though using the general method of multidimensional arrays for 
degree n=5 yielded legitimate results (i.e. not an inverted polynomial, 
imaginary time, ridiculous numbers, etc.), I was unable to use the guess and 
check method with Maple to zero in on the minimizing coefficients.  Though 
MatLab yielded approximate results, more complex programming is needed 
to converge on the absolute minimum time and the coefficients that yield 
that time.  Using Maple, I was unable to calculate a time that was smaller 
than the time for the previous polynomials, and it would be inaccurate to use 
MatLab’s results because of the error in numerical integration.  Thus, 
calculating polynomial degree n=5 is possible, but requires additional 
methodology. 
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Explanation of Program Logic 
 
The MatLab programs written to calculate the polynomials and times in the 
Experimental Results section are radically different than the classical 
approach of using loops for multiple variables.  The use of multidimensional 
arrays, though not very memory efficient, takes much less time than running 
a program of embedded ‘for’ loops. 
 
I developed a general method for calculating the approximate values for 
minimizing coefficients of any degree polynomial.  Each of the programs 
begins by defining vectors for each variable in the polynomial (i.e. the 
variable ‘x’ and the free coefficients, A, B, etc.)  Each of these one-
dimensional vectors is defined along its own dimension, each independent of 
one another.  Then, the length and size of each vector are assigned to 
variables for later reference.  The next step is the fundamental idea behind 
this method of arrays.  Each of the one-dimensional vectors is repeated in 
every dimension except the dimension of that vector.  For instance, if a 
vector is along the x-direction and there are 3 dimensions, the vector would 
be repeated along the y- and z-directions, so that the vector is constant in all 
directions except the one in which it was originally defined.  Once the 
vectors are repeated, they become multidimensional arrays.  The size of 
every array is the same, and the length of each of the vectors originally 
defined determines the length of each dimension in the array.  For instance, 
if the ‘A’ vector was 101 elements long and it was in the y-direction, the y-
dimension of each array would be 101 elements long.  This is the purpose of 
referencing each vector’s length. 
 
Next is the actual calculation of time.  Since all the variables’ arrays are the 
same size, algebraic operations can be done element by element.  After 
defining the polynomial ‘y,’ the derivative of y must then be defined.  While 
the ‘diff’ command might be useful, it is difficult to reference a specific 
dimension, so the derivative of y (yʹ) is defined manually by finding the 
difference of adjacent y values divided by the difference of adjacent x 
values.  It is important that these calculations take place in the dimension of 
x, as we are not differentiating with respect to coefficients.  After yʹ is 
defined, we must write a modified equation for differential time (dt), using 
Eq. (E.1) referenced in Experimental Results.  Notice that when 
differentiating a vector in MatLab, the length of the vector decreases by one 
element because differentiating finds the difference in adjacent elements.  
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So, the dx term of Eq. (1) is one element shorter than y.  Therefore, we can 
account for this by taking y to be the midpoint between adjacent y values 
(adding adjacent values and dividing by two).  Like differentiating, this 
decreases the length of y by one element, and it also makes the integration 
more accurate, as using a midpoint yields a much better estimate than left 
point or right point numerical integration.  After defining dt, all the elements 
in dt must be summed along the x direction and stored in a new array we 
will call t.  This decreases the number of dimensions in the dt array by one, 
leaving only the dimensions belonging to the coefficients.  The meaning is, 
every value inside the t array is a time value, and the index numbers for each 
of these elements correspond to the index numbers for the corresponding 
dimension’s coefficient.  By finding the minimum value of t in this array, 
then recording and calling the index numbers that reference this minimum 
value, one can locate the unique set of coefficients that minimize time.  After 
defining a new one-dimensional vector for x, one can use the minimizing 
coefficients to make a new one-dimensional vector for y in terms of x, and 
then make a plot of y versus x. 
 
After successfully running this program, one should manually decrease the 
range and decrease the step size of the one-dimensional vectors for each 
coefficient according to the values calculated.  Supposing the program is 
written correctly, this should be the only change necessary to converge on 
more accurate values for the minimizing coefficients.  To ensure your time is 
accurate, use a reasonably small step size for the x vector.  Make sure not to 
change this x vector when adjusting the coefficient ranges, as x is a true 
variable, and altering it will give you invalid results. 
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Discussion 
 
It makes sense that as the polynomials increased in degree, they modeled the 
cycloid solution more and more closely.  It is highly doubtful that any 
function with restrictions imposed on it (i.e. a polynomial of restricted 
degree) would turn out to be a better solution than the cycloid solution 
theorized by Leibnitz, Newton, etc.  Since trigonometric functions can be 
written as polynomials tending towards degree n=∞, it makes sense that 
since the parameterizations for cycloid curves involve trigonometric 
functions, and if indeed a cycloid is the best solution to the brachistochrone 
problem, then as the degree of the polynomial modeling the cycloid tends to 
∞, then the difference in the cycloid solution and the polynomial graphically 
tends to zero.  Hypothetically, if I would have successfully calculated 
polynomial degree n=5 or higher, the polynomial would have nearly masked 
the cycloid curve just by shear similarity. 
 
Looking at the programming that went into this project, I have yet to 
hypothesize a faster way, or developed an alternative method, to calculating 
the time of a polynomial and the corresponding minimizing coefficients.  
Multidimensional arrays seem like a very effective way to approach a 
problem of several variables when solving said problem numerically. 
 
 
Conclusions 
 

• The higher the degree of polynomial, the more closely it models the 
cycloid brachistochrone curve between two given points. 

• As polynomial degree increases, the minimum time yielded from the 
polynomial curve decreases to an asymptotic limit.  The results of this 
project indicate that this limit is the time it takes for a particle to 
traverse the inverted cycloid (the classical brachistochrone solution). 

• Substituting Taylor series polynomials for the trigonometric functions 
in the cycloid parameters (e.g. cos(θ) and sin(θ) ) theoretically yields 
the same minimum time as the cycloid.  This is true so long as the 
degree of the Taylor series polynomial tends towards ∞ (infinity). 

• My intelligence is not of the same caliber as that of Isaac Newton, but 
perseverance on this project led me to successfully calculate the 
requested polynomials and corresponding times.  
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Appendix 
(MatLab program coding) 

 
P.0 (cycloid) 
 
% z=theta 
clear all 
 
cx = 0; 
cy = 16; 
r = -8.274525895; 
zf = -2.775255217; 
z = [0:-0.00001:zf]'; 
M = ones(size(z)); 
 
x = r*(z-sin(z)); % + cx 
y = r*(M-cos(z))+cy*M; 
 
plot(x,y,'b'); 
axis equal; 
grid on; 
 
g = 9.81; 
n = length(z); 
ymid = (y(1:n-1)+y(2:n))/2; 
yp = diff(y)./diff(x); 
N = ones(size(yp)); 
dx = (x(2:n)-x(1:n-1)); 
dt = (sqrt((1+yp.^2)./(2*g*(16-ymid)))) .* dx; 
 
m = length(dt); 
t = sum(dt(1:m)) 
 

P.1 (polynomial degree n=1) 
 
% physical calculation 
clear all 
x = [0:0.001:20]; 
y = (-4/5)*x + 16; 
 
h = 16; 
b = 20; 
L = sqrt(h^2 + b^2); 
theta = atan(h/b); 
g = 9.81; 
gx = g*sin(theta); 
t = sqrt(2*L/gx); 
t 
 
plot(x,y,'g'); 
axis equal; 
grid on; 

OR 
% numerical calculation 
clear 
g = 9.81; 
m = -4/5; 
b = 16; 
x = [0:0.0001:20]; 
y = m*x + b; 
 
plot(x,y,'c'); 
axis equal; 
grid on; 
 
n = length(y); 
ypM = diff(y)./diff(x); 
yp = ypM(1); 
ymid = (y(1:n-1)+y(2:n))/2; 
dx = (x(2:n)-x(1:n-1)); 
dt = sqrt((1+yp^2)/(2*g*(16-ymid))) .* dx; 
 
m = length(dt); 
t = sum(dt(1:m)) 
 
plot(x,y,'r'); 
axis equal; 
grid on; 
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P.2 (polynomial degree n=2) 
 
clear all 
A = [0.0502:0.000001:0.0504]; % A = row vector 
B = -20*A-4/5; % B = row vector 
C = 16; 
 
x = [0:.01:20]'; % x = column vector 
y = (x.^2)*A + x*B + C; 
 
nA = length(A); 
nx = length(x); 
g = 9.81; 
x1 = x*ones(size(A)); 
yp = diff(y)./diff(x1); 
ymid = (y(2:nx,1:nA) + y(1:nx-1,1:nA))/2; 
dx = (x1(2:nx,1:nA)-x1(1:nx-1,1:nA)); 
dt = sqrt(( 1 + yp.^2) ./ (2*g*(C-ymid))) .* dx; 
 
choose =  195; 
 
% A = [0:.01:2], n=6 yields t_min; A(6)=0.05 
% A = [0.04:0.0001:0.06], n=104; A(104)=0.0503 
% A = [0.0502:0.000001:0.0504], n=190:200…. 
% A = utter overkill precision 
 
L = length(dt); 
t = sum(dt(1:L,choose)); 
 
Amin = A(choose); 
B = -20*Amin - 4/5; 
C = 16; 
y = Amin*x.^2 + B*x + C; 
 
axisX = [0 20]; 
axisY = [0 0]; 
plot (x,y,'c',axisX,axisY,'k--'); 
axis equal; 
grid on; 
printf('t = %.4f  A = %.4f  B = %.4f  C = %.0f\n', 
              t,Amin,B,C); 
 

P.3 (polynomial degree n=3) 
 
clear all 
 
x(1,1,:) = [0:0.01:20]; % extrusion 
A(1,:,1) = [-0.0032:0.00005:0.0030]; % row 
B(:,1,1) = [0.142:0.0005:0.144]; % column 
 
lA = length(A); 
lB = length(B); 
lx = length(x); 
sA = size(A); 
sB = size(B); 
sx = size(x); 
 
% C = -(400*A + 20*B + 4/5);  
D = 16; 
 
x = repmat(x, [lB,lA,1]); 
A = repmat(A, [lB,1,lx]); 
B = repmat(B, [1,lA,lx]); 
 
%% three 3-D arrays 
 
y = A.*x.^3+B.*x.^2+(-(400*A+20*B+4/5)).*x +D; 
yp = (y(:,:,2:lx)-y(:,:,1:lx-1))./(x(:,:,2:lx)-x(:,:,1:lx-1)); 
dt = sqrt((1+yp.^2)./(2*9.81*( D - (y(:,:,1:lx-1) 
                 +y(:,:,2:lx))/2   ))) .* (x(:,:,2:lx)-x(:,:,1:lx-
1)); 
t = sum(dt,3); 
[tmin J] = min(min(t)); 
[tmin I] = min(min(t')); 
 
Amin = A(I,J,1); 
Bmin = B(I,J,1); 
Cmin = -(400*Amin + 20*Bmin + 4/5); 
x_p = [0:0.01:20]; 
y_p = Amin*x_p.^3 + Bmin*x_p.^2 + Cmin*x_p + D; 
 
axisX = [0 20]; 
axisY = [0 0]; 
tmin = tmin 
printf('A = %.5f   B = %.5f   C = %.5f   D = %.0f\n', 
              Amin, Bmin, Cmin, D); 
plot(x_p,y_p,'m',axisX,axisY,'k--'); 
axis equal; 
grid on; 
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P.4 (polynomial degree n=4) 
 
clear all 
 
x(1,1,1,:) = [0:0.05:20]; % block number 
A(1,1,:,1) = [0.00005:0.000001:0.00007]; % depth # 
B(1,:,1,1) = [-0.0052:0.00001:-0.0050]; % column # 
C(:,1,1,1) = [0.158:0.0001:0.160]; % row # 
 
lA = length(A); 
lB = length(B); 
lC = length(C); 
lx = length(x); 
sA = size(A); 
sB = size(B); 
sC = size(C); 
sx = size(x); 
 
% D = -8000*A - 400*B - 20*C - 4/5; 
E = 16; 
 
x = repmat(x, [lC,lB,lA,1]); 
A = repmat(A, [lC,lB,1,lx]); 
B = repmat(B, [lC,1,lA,lx]); 
C = repmat(C, [1,lB,lA,lx]); 
 
%% four 4-D arrays 
 
y = A.*x.^4 + B.*x.^3 + C.*x.^2  
       - (8000*A + 400*B + 20*C + 4/5).*x + E; 
yp = (y(:,:,:,2:lx)-y(:,:,:,1:lx-1)) 
          ./ (x(:,:,:,2:lx)-x(:,:,:,1:lx-1)); 
dt = sqrt((1+yp.^2) 
                 ./(2*9.81*(E-(y(:,:,:,1:lx-1)+y(:,:,:,2:lx))/2))) 
        .* (x(:,:,:,2:lx)-x(:,:,:,1:lx-1)); 
t = sum(dt,4); 
 
[tmin K] = min(min(min(t))); 
[NA1 J] = min(min(t(:,:,K))); 
[NA2 I] = min(t(:,J,K)); 
 
Amin = A(1,1,K,1); 
Bmin = B(1,J,1,1); 
Cmin = C(I,1,1,1); 
Dmin = -8000*Amin - 400*Bmin - 20*Cmin - 4/5; 
 
x_plot = [0:0.01:20]; 
y_plot = Amin*x_plot.^4 + Bmin*x_plot.^3 + 
Cmin*x_plot.^2 + Dmin*x_plot + E; 
 
axisX = [0 20]; 
axisY = [0 0]; 
tmin = tmin 
printf('A=%.7f  B=%.6f  C=%.5f  D=%.5f  E=%.0f\n', 
              Amin,Bmin,Cmin,Dmin,E); 
 

P.5 (polynomial degree n=5) 
 
clear all 
 
x(1,1,1,1,:) = [0:0.01:20]; % block column # 
A(1,1,1,:,1) = [-2e-7:1e-8:-1e-7]; % block row # 
B(1,1,:,1,1) = [-3.9e-5:1e-6:-3.7e-5]; % depth # 
C(1,:,1,1,1) = [-4.1e-4:1e-6:-3.9e-4]; % column # 
D(:,1,1,1,1) = [0.0908:0.0001:0.0912]; % row # 
 
lA = length(A); 
lB = length(B); 
lC = length(C); 
lD = length(D); 
lx = length(x); 
sA = size(A); 
sB = size(B); 
sC = size(C); 
sD = size(D); 
sx = size(x); 
 
% E = -(160000*A + 8000*B + 400*C + 20*D + 4/5); 
F = 16; 
 
x = repmat(x, [lD,lC,lB,lA,1]); 
A = repmat(A, [lD,lC,lB,1,lx]); 
B = repmat(B, [lD,lC,1,lA,lx]); 
C = repmat(C, [lD,1,lB,lA,lx]); 
D = repmat(D, [1,lC,lB,lA,lx]); 
 
%% five 5-D arrays 
 
y = A.*x.^5 + B.*x.^4 + C.*x.^3 + D.*x.^2 -
(160000*A 
      + 8000*B + 400*C + 20*D + 4/5).*x + F; 
yp = (y(:,:,:,:,2:lx)-y(:,:,:,:,1:lx-1)) 
          ./ (x(:,:,:,:,2:lx)-x(:,:,:,:,1:lx-1)); 
dt = sqrt((1+yp.^2)./(2*9.81*( F - (y(:,:,:,:,1:lx-1) 
                +y(:,:,:,:,2:lx))/2   ))) 
        .* (x(:,:,:,:,2:lx)-x(:,:,:,:,1:lx-1)); 
t = sum(dt,5); 
 
[tmin N] = min(min(min(min(t)))); 
[NA1 K] = min(min(min(t(:,:,:,N)))); 
[NA2 J] = min(min(t(:,:,K,N))); 
[NA3 I] = min(t(:,J,K,N)); 
 
Amin = A(1,1,1,N,1); 
Bmin = B(1,1,K,1,1); 
Cmin = C(1,J,1,1,1); 
Dmin = D(I,1,1,1,1); 
Emin = -(160000*Amin + 8000*Bmin + 400*Cmin 
                  + 20*Dmin + 4/5); 
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plot(x_plot,y_plot,'r',axisX,axisY,'k--'); 
axis equal; 
grid on; 
 

x_plot = [0:0.01:20]; 
y_plot = Amin*x_plot.^5 + Bmin*x_plot.^4 + 
Cmin*x_plot.^3 + Dmin*x_plot.^2 + Emin*x_plot + F; 
 
axisX = [0 20]; 
axisY = [0 0]; 
tmin = tmin 
 
printf('A = %.4e   B = %.4e   C = %.4e   D = %.5f    
              E = %.5f   F = %d\n', 
              Amin,Bmin,Cmin,Dmin,Emin,F); 
plot(x_plot,y_plot,'k',axisX,axisY,'k--'); 
axis equal; 
grid on; 
 

 
 

Maple Program Coding 
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